

RENEWABLE ENERGY -

GENERALCATALOGUE

THERMODYNAMIC SOLAR ENERGY HEAT PUMPS

RENEWABLE ENERGY | ECONOMY | INDEPENDENCE | ECOLOGY

Address Zona Industrial de Laúndos, Lote 48 4570-311 Laúndos - Póvoa de Varzim PORTUGAL GPS Coordinates N 41 27.215' , W 8 43.669' Telephone + 351 252 600 230 Fax number + 351 252 600 239 E-mail geral@energie.pt Website www.energie.pt

Company certifications

Partners of the organizations

THE ENERGIE BRAND

Based on a customer satisfaction policy, the brand is synonymous with reliability, quality, innovation and efficiency. It is governed by strict standards that aim at economy, comfort and well-being of the consumers. To find out more about us go to:

www.energie.pt

ENERGIE AROUND THE WORLD

COMPANY CHRONOLOGY

Solar Energy).

PICTOGRAMS OF THE PRODUCT

Pictograms are icons developed to make the interpretation of key characteristics of each one of our products easier. Check our list of pictograms below and discover the meaning behind each one. When you find one in a product technical sheet you can return to this page to check the meaning if you have doubts.

SOLAR PERFORMANCE

The performance of the equipment is far higher than the COP of any aerothermal heat pump when exposed to Solar

ANTI-LEGIONELA

Function that allows the user to disinfect/sanitise the equipment cylinder.

EXTRA COIL

Equipment with a supplementary/extra coil that allows the other auxiliary systems to be connected

ENERGY EFFICIENCY

energy consumption

ANTICORROSION

The system has magnesium

anode, which carries out

the cathodic protection (anticorrosion) of the cylinder

Efficient equipment with low

AUTOMATIC DEFROST

Defrost function with automatic management. The equipment does defrosting to guarantee that it will function even when the temperature is below zero.

ENERGY EFFICIENCY +

Super Efficient Equipment with low energy consumption

RESPECT FOR THE ENVIRONMENT

The polyurethane used inside the cylinder is free of

FAST HEATING TIME

Equipment with fast heating time

R134A Cooling liquid that is environmentally friendly, non-

flammable and non-toxic.

EASY TO INSTALL

The system has a small amount of installation items

AMBIENT TEMPERATURE DISPLAY

The command panel display shows the temperature of the

Cooling liquid that is environmentally friendly, nonflammable and non-toxic

GREAT DURABILITY

The system is designed to have longevity.

MADE IN EUROPE

European production

SILENT

The equipment does not make any sound in your home.

Certified products transmit more safety and reliability to the client when purchased.

PERFORMANCE EFFICIENCY QUALITY

WE WORK EVERYDAY ON DELIVERING SOLUTIONS FOR YOUR COMFORT AND WELL-BEING

DOMESTIC HOT WATER
 CENTRAL HEATING
 SWIMMING-POOL HEATING SYSTEM

INDEX

DOMESTIC HOT WATER - DOMESTIC USE ECO 200 to 450 litre solutions SOLAR BOX

DOMESTIC HOT WATER - INDUSTRIAL USE ECO XL 1000 to 6000 litre solutions

5 **CENTRAL HEATING** SOLAR BLOCK 6 to 40 panel solutions

SWIMMING-POOL HEATING SOLAR BLOCK 6 to 40 panel solutions

DOMESTIC HOT WATER AQUAPURA SPLIT

AQUAPURA MONOBLOC

HEAT PUMPS

THERMODYNAMIC SOLAR ENERGY

THERMODYNAMIC **SOLAR SYSTEM** RATINI PRINCIP

Solar Panel

- Captures heat regardless of climate. Primary circuit does not need to
- Easy integration with architecture, versatile, no visual impact.

- Without ducts
- Without ventilators
- Without defrost cycles that use up energy
- Super efficient compressor with low energy consumption
- No need to install support equipment
- Hot water guaranteed, available day and night, hail, rain, wind or shine up to 55°c

DOMESTIC HOT WATER **CENTRAL HEATING** SWIMMING-POOL HEATING

The Thermodynamics Solar System joins two incomplete technologies, the heat pump and the solar thermal

Heat pumps are guite efficient equipment but the heat they produce from their renewable component varies only according to changes in the temperature of the environment.

Thermal solar collectors are the best source of heat on hot and sunny days but they are totally inefficient whenever there is no sun.

The Thermodynamic Solar Technology manages to surpass the limitations of

both the heat pump and solar collector

Expansion

Valve

Through the cooling liquid (R134a or R407c) which covers a closed circuit, the liquid goes into the solar panel and suffers the action of sun, rain, wind, environment temperature and other climate factors. During this process the liquid gains heat in a more favourable way than a heat pump. After this stage, the heat is transferred to an exchanger with the help of a small compressor, which heats the water. The liquid cools down and the circuit is repeated. As the fluid has a boiling temperature

of approximately -30°C, the system works even when there is no sun and it even works at night, providing hot water at 55°C, day and night, hail, rain, wind or shine, unlike the traditional solar thermal system.

Condenser

The energy consumption of the system is basically the same as a fridge compressor that makes the liquid circulate. There are no ventilators that help the evaporation process, or defrost cycles, which imply unnecessary energy consumption, unlike what happens with heat pumps.

Compressor

WATER UP TO

HOT

There are left and right thermodynamic solar panels. These can be distinguished by looking at the side that has the connections, as seen in the picture.

- ANODIZED ALUMINIUM, WITH FLEXIBLE COATING
- LIGHT WEIGHT ONLY 8 KILOS, EASY TO TRANSPORT AND INSTALL
- DIMENSIONS: 2m X 0,8m X 0,02m
- NO GLASS, RUBBER OR FRAGILE
 MATERIALS
- NO RISK OF OVER HEATING
- NO RISK OF FREEZING
- HIGH RESISTANCE IN SALINE
 ENVIRONMENT

- HIGH RESISTANCE TO HUMIDITY
- IT CAN BE INSTALLED FROM 10° TO 85° IN A HORIZONTAL POSITION
- IT CAN BE INSTALLED ON THE ROOF, WALL, IN THE GARDEN, ETC...
- THE PANEL DOES NOT LOSE ITS
 EFFICIENCY WITH TIME OR WITH DIRT
- NO NEED TO CLEAN
- ESTIMATED USEFUL LIFE OF 25 YEARS

DID YOU KNOW?

That all thermodynamic solar systems only have one mechanical element that requires electricity? This element is a low energy consumption compressor and is extremely efficient. As the capacity to capture heat from the environment is primarily ensured through solar radiation, it is superior to other equipment with the same goal ensuring saving to the maximum.

The maintenance of the system is practically non-existent and it has high longevity.

Eco 200 / Eco 250 / Eco 300 / Eco 450

ECO

Probably the most developed solar water heater in the world

Available with capacities of 200 to 450 litres. Versions with one or two solar panels, with or without supplementary coi Cylinder available in enamelled or stainless steel.

Eco 200 / Eco 250 / Eco 300 / Eco 450

Eco
Capacity (litres)
200, 250, 300, 450 litre Cylinders
Cylinder Material esm (Enamelled) i (Stainless)
Solar Panels S
Supplementary Coil X

Optional and when applicable
 888 Represents the capacity of equipment

Examples

ECO 300esms Eco with 300 litre capacity with enamelled cylinder and 2 solar panels

ECO 200esm Eco with 200 litre capacity with enamelled cylinder and 1 solar panel

ECO 300ix Eco with 300 litre capacity with stainless steel cylinder, supplementary coil and 1 solar panel

ECO 300isx Eco with 300 litre capacity with stainless steel cylinder, supplementary coil and 2 solar panels

ELECTRONIC CONTROLLER

ECO Operating Mode

In the ECO operating mode, the equipment only works as a Thermodynamic Solar System to heat water in the thermal storage. Thus we can have higher efficiency, guaranteeing maximum saving for the user.

AUTO Operating Mode

In the AUTO operating mode, the equipment works as a Thermodynamic Solar System and/or electrical support, there being an automatic management between the operating of the solar system and electrical support, in order to maintain the efficiency of the equipment, thus providing a higher quantity of hot water available.

BOOST Operating mode

In the BOOST operating mode the equipment works with a Thermodynamic Solar System and electrical support simultaneously. This mode allows the user to get hot water in a shorter amount of time.

Eco 200 / Eco 250 / Eco 300 / Eco 450

MAXIMUM FFFICIENC

NEW

MAXIMUM PRODUCTIVITY WITH SOLAR PERFORMANCE

100% ENVIRONMENTALLY FRIENDLY

- HEAT IS CAPTURED UNDER THE FORM OF SOLAR RADITION, ENVIRONMENTAL TEMPERATURE, RAIN, WIND AND EVEN SNOW
- THE HEAT PRODUCED ON COLDER DAYS, EVEN AT NIGHT IS SUFFICIENT TO ATTAIN THE WATER
 TEMPERATURE DESIRED
- THE SOLAR PANEL IS LIGHT, DISCREET AND VERSATILE IN TERMS OF WHERE TO PUT IT
- OUTSIDE CYLINDER CONDENSER (NO CONTACT WITH WATER)
- 3RD GENERATION THERMODYNAMIC SOLAR ENERGY
- HOT WATER UP TO 55° AVAILABLE 24h PER DAY
- ALMOST NON-EXISTENT MAINTENANCE
- THE ENERGY CONSUMPTION OF THE EQUIPMENT IS REDUCED DUE TO A SUPER EFFICIENT COMPRESSOR
- NO DEFROST CYCLE

ENERGIE

Versions with 1 or 2 Thermodynamic Solar Pane Enamelled or stainless steel cylinder With or without Supplementary Coil

Check warranty conditions

Thermodynamic Solar System with one Solar Panel

Sp	ecifications		Eco 200esm	Eco 250i Eco 250esm	Eco 300i Eco 300esm
Nor	minal Capacity	l	200	250	300
The	ermal Power (Med/Max)	W	1690/2900	1690/2900	1690/2900
Pov	ver Consumption (Med/Max)	W	390/550	390/550	390/550
Ten	nperature (Factory Setpoint)	°C	52	52	52
Max	ximumTemperature	°C	70	70	70
Max	k Amount of water at 40°C in a run (St./En.)	l	-/290	330/345	375/408
Max	ximum Operation Pressure	bar	6	б	б
Nur	mber of Panels		1	1	1
Liq	uid Line	Pol.	1/4	1/4	1/4
Suc	tion Line	Pol.	3/8	3/8	3/8
Ele	ctrical back-up power	W	1500	1500	1500
Gro	oss Weight of Cylinder (St./En.)	Kg	-/73	62/83	74/95
Ele	ctrical Supply	V/Hz	230/50-60	230/50-60	230/50-60

Equipment with fluid pre-charge Easy Install Economic Solar Solution

Technical Drawing Р L 'n 5) L-2000mm H-800mm Н P-20mm 5 Steam Line • Liquid Line 0 0 0 ۵ U 4

With flares valves on the solar panel and on the thermodynamic group With dielectric threads for water connections

	Dimensions (mm)	s Eco 200esm	Eco 250i Eco 250esm	Eco 300i Eco 300esm
	А	74	74	74
-	В	650	815	815
	С	1146	1326	1543
	D	1274	1454	1671
	E	580	580	580
	F	880	880	880
	G	1350	1530	1750
	Н	370	370	370
_		765	765	765

1 (Hot Water)	3/4" Male
2 (PT Valve) *	1/2" Female
3 (Recirculation)	3/4" Male
4 (Cold Water)	3/4" Male
5 (Coil Inlet)	-
6 (Coil Outlet)	-

* Optional

Thermodynamic Solar System with one Solar Panel + Supplementary Coil

Specifications		Eco 250ix	Eco 300ix
Nominal Capacity	l	250	300
Thermal Power (Med/Max)	W	1690/2900	1690/2900
Power Consumption (Med/Max)	W	390/550	390/550
Temperature (Factory Setpoint)	°C	52	52
Maximum Temperature	°C	70	70
Max. Amount of water at 40°C in a run (St.)	l	325	370
Maximum Operation Pressure	bar	б	б
Number of Panels		1	1
Liquid Line	Pol.	1/4	1/4
Suction Line	Pol.	3/8	3/8
Electrical back-up power	W	1500	1500
Gross Weight of Cylinder (St.)	Kg	69	81
Electrical Supply	V/Hz	230/50-60	230/50-60

Allows the connection of another heat source Easy Install Equipment with fluid pre-charge

Technical drawing Ρ L п 5 Н ſ 0 0 0 3 U 6 4

With flares valves on the solar panel and on the thermodynamic group With dielectric threads for water connections

Dimensions (mm)	Eco 250ix	Eco 300ix			
A	74	74			
В	815	815			
С	1326	1543			
D	1454	1671			
E	580	580			
F	880	880			
G	1530	1750			
Н	370	370			
l	765	765			
J	1251	1251			
	681	681			
1 (Hot Wate	r) 3/4	"Male			
2 (PT Valve	* 1/2"	Female			
3 (Recirculat	ion) 3/4	"Male			
4 (Cold Wat	Water) 3/4" Male				
5 (Coil Inle	Inlet) 1" Male				
6 (Coil Outle	et) 1"	Malo			

L-2000mm H-800mm

P-20mm Steam line • Liquid line

Thermodynamic Solar System with two Solar Panels

Specifications		Eco 250is	Eco 300is Eco 300esms	Eco 450is
Nominal Capacity	l	250	300	450
Thermal Power (Med/Max)	W	2800/4550	2800/4550	2800/4550
Power Consumption (Med/Max)	W	595/890	595/890	595/890
Temperature (Factory Setpoint)	°C	52	52	52
Maximum Temperature	°C	70	70	70
Max. Amount of water at 40°C in a run (St./En.)	l	330/-	375/408	515/-
Maximum Operation Pressure	bar	б	б	б
Number of Panels		2	2	2
Liquid Line	Pol.	3/8	3/8	3/8
Suction Line	Pol.	1/2	1/2	1/2
Electrical back-up power	W	1500	1500	2500
Gross Weight of Cylinder (St./En.)	Kg	62/-	74/95	110/-
Electrical Supply	V/Hz	230/50-60	230/50-60	230/50-60

Superior Performance Equipment with fluid pre-charge Larger number of users

Technical Drawing Ρ L 'n ∍ L-2000mm H-800mm н ſſ P-20mm 5 Steam line • Liquid line 0 0 0 ۵ U 4

Includes Liquid Distributor With dielectric threads for water connections

Dimensior (mm)	is Eco 250i	Eco 300is s Eco 300esm	is Eco 450is
A	74	74	77
В	815	815	757
С	1326	1543	1769
D	1454	1671	1912
E	580	580	650
F	880	880	950
G	1530	1750	1950
Н	370	370	370
	765	765	765
		Ecc250is 300is/300esms	Eco450is
1 (Hot	: Water)	3/4″ Male	1" Male
2 (PT	Valve) *	1/2" Female	1/2" Female
3 (Reci	culation)	3/4" Male	3/4" Male
4 (Col	4 (Cold Water)		1" Male
5 (Co	5 (Coil Inlet)		-
6 (Coi	l Outlet)	-	-
*0~	tional		

Optional

Thermodynamic Solar System with two Solar Panels + Supplementary Coil

Specifications		Eco 250isx	Eco 300isx	Eco450isx
Nominal Capacity	l	250	300	450
Thermal Power (Med/Max)	W	2800/4550	2800/4550	2800/4550
Power Consumption (Med/Max)	W	595/890	595/890	595/890
Temperature (Factory Setpoint)	°C	52	52	52
Maximum Temperature	°C	70	70	70
Max. Amount of water at 40°C in a run (St.) [325	370	510
Maximum Operation Pressure	bar	б	б	6
Number of Panels		2	2	2
Liquid Line	Pol.	3/8	3/8	3/8
Suction Line	Pol.	1/2	1/2	1/2
Electrical back-up power	W	1500	1500	2500
Gross Weight of Cylinder (St.)	Kg	69	81	117
Electrical Supply	V/Hz	230/50-60	230/50-60	230/50-60

Superior Performance Equipment with fluid pre-charge Larger number of users Allows the connection of another heat source

Includes Liquid Distributor

With dielectric threads for water connections

(mm)	Eco 250isx	Eco 300is>	Eco 450isx	
А	74	74	77	
В	815	815	757	
С	1320	1543	1769	
D	1454	1671	1912	
E	580	580	650	
F	880	880	950	
G	1530	1750	1950	
Н	370	370	370	
I	765	765	765	
J	1251	1251	Nd	
L	681	681	Nd	
	Eo	0250isx/300is	x Eco450sx	
1 (Hot	water)	3/4" Male	1" Male	
2 (PT \	valve)*	1/2" Female	1/2" Female	
3 (Recire	culation)	3/4" Male	3/4" Male	
4 (Cold	l water)	3/4" Male	1" Male	
5 (Coi	l Inlet)	1″ Male	1" Male	
6 (Coil	Outlet)	1" Male	1" Male	
*Opt	ional		-	

Accessories included in the equipment

Steel profiles to put up the panel (small and large sizes)

Pressure reducing valve and manometer

Safety group

M6 Screws + washers + panel setting rawlplug

List of equipment from the range

Model	No. of Panels	Enamelled	Stainless	Extra Coil	Litres	No. of People
Eco 200esm	1	Х			200	4
Eco 250esm	1	Х			250	4
Eco 300esm	1	Х			300	5 *****
Eco 250i	1		Х		250	4
Eco 300i	1		Х		300	5 * * * * * *
Eco 250ix	1		Х		250	4
Eco 300ix	1		Х		300	5 .
Eco 300esms	2	Х			300	6 ******
Eco 250is	2		Х		250	5
Eco 300is	2		Х		300	6 ******
Eco 450is	2		Х		450	9 ÜÜÜÜÜÜÜÜÜ
Eco 250isx	2		Х		250	5 ****
Eco 300isx	2		Х	() 11111	300	6 *****
Eco 450isx	2		Х		450	9 WÜÜÜÜÜÜÜÜ P

SOLAR BOX RETRO FITS TO THE EXISTING CYLINDER

- WORKS DAY & NIGHT, IN HAIL, RAIN, WIND OR SHINE
- THE SOLAR BOX CAN BE HUNG ON THE WALL OR BE PLACED ON THE FLOOR
- VERY COMPACT UNIT
- RELIABLE HOT WATER
- ADAPTS TO ALL KINDS OF CYLINDERS

NEW

Check warranty conditions

KEEP YOU DHW CYLINDER AND TURN IT INTO AN EFFICIENT SOLAR SYSTEM

HOT WATER DAY & NIGHT, HAIL, RAIN, WIND OR SHINE **SAVINGS UP TO**

4.013

Diagram

Caption	
1	Sectioning Valve
2	Check Valve
3	Pressure Reducer
4	Safety Group
5	Expansion Vase
6	Filter
7	Discharge Valve
A	Network
В	Hot water Outlet
C	SolarBox
D	Thermodynamic Panel
E	Network
51	Temperature Sensor

. Л THERMAL STORAGE WITH CONNECTIONS TO BACK UP

Circulation Pump Suitable for DHW Heats water up to 55°C High Performance Plate Heat Exchanger Suitable for DHW

Technical drawing

Specifications

Provided Thermal Power (Min./Max.)	W	800/2200
Power Consumption (Med./Max.)	W	250/490
Electrical Supply	V/Hz	230/50-60
Cooling Fluid	-/kg	R134a/0,8
Maximum Temperature	°C	55
Maximum Operation Pressure	bar	7
Hydraulic Connection (Inlet/Outlet)	Pol.	1/2 1/2
Weight (Solarbox/Panel)	kg	23,5/8
Flare Connections (Suction/Liquid)	Pol.	3/8 1/4

THERMODYNAMIC SOLAR BLOCK

This unit of the Thermodynamic Solar System has the following main components: a low consumption compressor, which is responsible for the circulation of the liquid throughout the whole system, a heat exchanger that dissipates heat into the water for consumption (Domestic Hot Water) or the closed heating circuit (Central Heating and Swimming-pool Heating) and an expansion component that reduces the boiling temperature from approximately – 30°C so that it can go back to the thermodynamic solar panels and capture heat again.

- MOST ADVANCED SCROLL COMPRESSOR IN THE MARKET
- OPTMIZED SOUNDPROOFING
- ELECTRONIC EXPANSION VALVE
- VERSATILE ELECTRONIC CONTROLLER WITH INTUITIVE HANDLING
- EXCELLENT QUALITY HEAT EXCHANGERS

- 10

ELECTRONIC CONTROLLER

Energy Diagram

Energy needed to raise the temperature of 1000L of water from 15° to 55°. Calculation based on norm EN 16147.

HOTEL WITH CAPACITY

FECO XL

HEAT PUMP

Compare

Consumptions

Example for a 3

star Hotel with 20

double rooms

ECO XL

Thermodynamic Solar Solution to heat domestic water for industrial use

Equipment with 6 to 40 solar panels. Capacities of 1000 to 6000 litres. Polywarm or Stainless Steel Cylinders

34 | ENERGIE CATALOGUE

The Thermodynamic Solar Solutions aimed at heating domestic water for industrial use have enough versatility in order for their application to meet the needs of the case at hand.

Choose your model

Example

ECO 3000 WXD 28 T ECO of 3000 litre capacity with 2 Polywarm cylinders with a high productivity exchanger, 28 panels, three-stage version.

Eco 1000 / 1500 / 2000 / 3000 / 4000 / 6000

It is also in thinking about the needs of the professionals in this sector that we make an ample range of equipment available so that any new or existing installation is no longer a challenge and is simplified. The focus is always on economy and efficiency.

1 Shut-off Valve	7 Check Valve (non-return)	D Hot Water Outlet	BC Boiler Circulator Pump
2 Pressure Reducer	9 Thermal Storage	S1 Temperature Sensor S1	CA Boiler (Support)
3 Security Valve	A Thermodynamic Solar Panels	S4 Temperature Sensor S4	
4 Expansion Valve	C Cold Water Inlet	Text Outside Thermostat	

- Model Eco XL
 Capacity (litres) 1000, 1500, 2000, 3000, 4000 or 6000 litres
 Cylinder Material
 - w (Polywarm) i (Stainless)

Supplementary Coil (Stainless Cylinders) or High Productivity Exchanger (Polywarm Cylinder) X (optional)

*5 2 Cylinders D (Available in models Eco 2000, Eco 3000, Eco 4000 e Eco 6000) (optional) 6 Number of Solar Panels that make up the system

S Single-phaseT Three-phase

Optional and when applicable
 8888 Represents the capacity of equipment

MAXIMUM EFFICIENC

HOTELS, HOSPITALS, SCHOOLS, SPORTS HALLS, INDUSTRY WITH **DOMESTIC ECONOMY**

MINIMUM OF CO2 EMISSIONS (KYOTO PROTOCOL)

- POSSIBILITY OF ADAPTING THE EXISTING INSTALLATION WITHOUT THE NEED FOR CIVIL
 CONSTRUCTION WORKS
- HEAT IS CAPTURED THROUGH SOLAR RADIATION, ENVIRONMENT TEMPERATURE, RAIN, WIND AND EVEN SNOW
- THE HEAT PRODUCED ON COLDER DAYS, EVEN AT NIGHT IS SUFFICIENT TO ATTAIN THE WATER TEMPERATURE DESIRED.
- THE SOLAR PANELS ARE LIGHT, DISCREET AND HAVE VERSATILITY IN TERMS OF WHERE TO PUT THEM.
- THE ENERGY CONSUMPTION OF THE EQUIPMENT IS REDUCED DUE TO A VERY EFFICIENT COMPRESSOR

Versions with 1 or 2 Cylinders Polywarm or Stainless Steel Cylinders with finned tube heat exchanger With or without water/water heat exchanger Equipment from 6 up to 40 thermodynamic solar panels Capacities from 1000 up to 6000 litres

- 3rd GENERATION SOLAR ENERGY
- SOLAR HOT WATER UP TO 60°C AVAILABLE
- ALMOST NON-EXISTENT MAINTENANCE
- UP TO 3 CYCLES OF HOT WATER REPLACEMENT SYSTEM CAPACITY PER DAY

Check warranty conditions

Thermodynamic Solar Systems for Large Volumes of Domestic Hot Water with a Cylinder

1 Stainless Steel Cylinder with Simple Flange 1 High Efficiency Finned Tube Heat Exchanger Optional Water/Water Serpentine Heat Exchanger 1 Solar Block

Model	Litres	Solar Block
Eco 1000	1000	б
Eco 1500	1500	12
Eco 2000	2000	12, 16

8888 Represents the capacity of the equipment88 Represents the number of panels

Thermodynamic Solar Systems for Big Volumes of Domestic Hot Water with two Cylinders

ECO 8888 WD 88 2000 to 6000

2 Polywarm Cylinders with Simple Flange

2 High Productivity Helical Exchangers in Copper (Fridge Liquid) 1 Solar Block

ECO 8888 WXD 88 2000 to 6000

1 Polywarm Cylinder with Simple Flange

1 Polywarm Cylinder with Double Flange

2 High Efficiency Finned Tube Heat Exchangers

1 Water/Water Copper Heat Exchanger

1 Solar Block

ECO 3888 ID 88 e ECO 8888 IXD 88 2000 to 6000

2 Stainless Steel Cylinders with Simple Flange 2 High Efficiency Finned Tube Heat Exchangers Optional Water/Water Serpentine Heat Exchanger 1 Solar Block

Model	Litres	Solar Block
Eco 2000	2x1000	12, 16
Eco 3000	2x1500	16, 28
Eco 4000	2x2000	28
Eco 6000	2x3000	40

8888 Represents the capacity of the equipment88 Represents the number of panels

STAINLESS Cylinder

POLYWARM Cylinder

According to model selected

Letter	1000 l Stainless Polywarm	1500 l Stainless Polywarm	2000 l Stainless Polywarm	3000 l Stainless Polywarm
A	1" 1/4 F 1" 1/2 F	1″ 1/2 F 2″ F	2" F 2" F	2" F 2"F
В	1″ 1/4 F 1″ 1/2 F	1″ 1/2 F 1″ 1/2 F	2"F 2"F	2"F 2"F
C	1″ 1/4 F 1″ 1/2 F	1″ 1/2 F 1″ 1/2 F	2"F 2"F	2" F 2"F
D	1″1/4 F -	1″1/4 F 1″1/4 F	1"1/4 F 1"1/4 F	1"1/4 F 1"1/4 F
E	1/2″F -	1/2″F -	1/2" F -	1/2"F -
F	1"F 3/4"F	1" F 1" F	1″ F 1″ F	1" F 1" F
G	1/2"F 1/2"F	1/2"F 1/2"F	1/2" F 1/2" F	1/2" F 1/2"F
Н	1/2"F 2"F	1/2" F 2" F	1/2"F 2"F	1/2" F 2"F
1	1" F 1"1/4 F	1"1/4 F 1"1/4 F	1"1/4 F 1"1/4 F	1"1/4 F 1"1/4 F
J	1/2"F -	1/2″F -	1/2" F -	1/2″F -
L	1/2"F -	1/2″F -	1/2"F -	1/2" F -
М	1″1/4 F -	1″1/4F -	1″1/4F -	1″1/4 F -
Ν	1″1/4F -	1″1/4 F -	1″1/4F -	1"1/4 F -
0	2010mm 2192mm	2100mm 2497mm	2160mm 2574mm	2300mm 2917mm
P	930mm 950 mm	1140mm 1050mm	1300mm 1200mm	1500mm 1350mm

Note: Technical drawing of the Solar Block on page 54

DURATION OF THE HEATING CYCLE

Average period of time necessary for the **total volume** of water in the equipment to reach the desired temperature*

SOLAR BLOCK 6	ECO 1000			
SOLAR BLOCK 12	ECO 1500		ECO 2000	
SOLAR BLOCK 16	ECO 2000		ECO 3000	
SOLAR BLOCK 28	ECO 3000 / ECO 4000			
SOLAR BLOCK 40	ECO 6000			
		6-8		 10-12
-W50		hours		hours

*A7/W10-W50

Model	Units	Eco 1000	Eco 1500	Eco 2000	Eco 3000	Eco 4000	Eco 6000
Solar Panels	Nb.	б	12	12/16	16 / 28	28	40
Nominal Capacity	Į	1000	1500	2000	3000	4000	6000
Maximum Thermal Power	W	7500	16580	16580/24210	24210/38220	38220	54600
Power Consumption	W	1230	2010	2010/3210	3210/5650	5650	8450
Thermal storage	Nb.	1	1	1 ou 2	1 ou 2	2	2
Users*	Nb.	22	34	45	68	90	135

*Considering an average consumption of 50 litres/persons.day

Polywarm Cylinders

Name	Nominal Capacity	Cylinder	Panels	Coil	Electrical Suply*
Eco 1000W6	1000	Polywarm	б	No	S/T
Eco 1000WX6	1000	Polywarm	б	Yes	S/T
Eco 1500W12	1500	Polywarm	12	No	S/T
Eco 1500WX12	1500	Polywarm	12	Yes	S/T
Eco 2000W12	2000	Polywarm	12	No	S/T
Eco 2000WX12	2000	Polywarm	12	Yes	S/T
Eco 2000WD12	2 × 1000	Polywarm	12	No	S/T
Eco 2000WXD12	2 × 1000	Polywarm	12	Yes	S/T
Eco 2000W16	2000	Polywarm	16	No	S/T
Eco 2000WX16	2000	Polywarm	16	Yes	S/T
Eco 2000WD16 2 × 1000 Eco 2000WXD16 2 × 1000		Polywarm	16 16	No Yes	S/T
		Polywarm			S/T
Eco 3000W16	3000	Polywarm	16	No	S/T
Eco 3000WX16	3000	Polywarm	16	Yes	S/T
Eco 3000WD16	2 × 1500	Polywarm	16	No	S/T
Eco 3000WXD16	16 2 × 1500	Polywarm	16	Yes	S/T
Eco 3000W28	3000	Polywarm	28	No	Т
Eco 3000WX28	3000	Polywarm	28	Yes	Т
Eco 3000WD28	2 × 1500	Polywarm	28	No	Т
Eco 3000WXD28	2 × 1500	Polywarm	28	Yes	Т
Eco 4000WD28	2 × 2000	Polywarm	28	No	Т
Eco 4000WXD28	2 × 2000	Polywarm	28	Yes	Т
Eco 6000WD40	2 × 3000	Polywarm	40	No	Т
Eco 6000WXD40	2 × 3000	Polywarm	40	Yes	Т

Stainless Steel Cylinders

Name	Nominal Capacity	Cylinder	Panels	Coil	Electrical Suply*
Eco 1000l6	1000	Stainless	б	No	S/T
Eco 1000IX6	1000	Stainless	б	Yes	S/T
Eco 1500 12	Eco 1500 12 1500		12	No	S/T
Eco 1500 X12	1500	Stainless	12	Yes	S/T
Eco 2000 12	2000	Stainless	12	No	S/T
Eco 2000 X12	2000	Stainless	12	Yes	S/T
Eco 2000ID12	2 × 1000	Stainless	12	No	S/T
Eco 2000IXD12	2 × 1000	Stainless	12	Yes	S/T
Eco 2000 16	2000	Stainless	16	No	S/T
Eco 2000IX16	2000	Stainless	16	Yes	S/T
Eco 2000ID16	Eco 2000ID16 2 × 1000		16	No	S/T
Eco 2000IXD16	Eco 2000IXD16 2 × 1000		16	Yes	S/T
Eco 3000 16	3000	Stainless	16	No	S/T
Eco 3000IX16	3000	Stainless	Stainless 16	Yes	S/T
Eco 3000ID16	2 × 1500	Stainless	16	No	S/T
Eco 3000IXD16	2 × 1500	Stainless	16	Yes	S/T
Eco 3000128	3000	Stainless	28	No	Т
Eco 3000IX28	3000	Stainless	28	Yes	Т
Eco 3000ID28	2 × 1500	Stainless	28	No	Т
Eco 3000IXD28	2 × 1500	Stainless	28	Yes	Т
Eco 4000ID28	2 × 2000	Stainless	28	No	Ţ
Eco 4000IXD28	2 × 2000	Stainless	28	Yes	Т
Eco 6000ID40	2 × 3000	Stainless	40	No	Т
Eco 6000IXD40	2 × 3000	Stainless	40	Yes	Т

*S-Single-Phase/T-Three-Phase

Advantages in acquiring a Solar Block for Central Heating:

- LOW CO2 EMISSIONS
- WITH ELECTRICITY PRICES GOING UP ALL THE TIME, THE RIGHT INVESTMENT IS IN EFFICIENCY TO OBTAIN MAXIMUM SAVING.
- RENEWABLE ENERGY IN YOUR HOME
- MAKE YOUR HOME ENVIRONMENTALLY FRIENDLY

CENTRAL HEATING

Thermodynamic Solar Solution for central heating

Equipment with 6 to 40 solar panels

CENTRAL HEATING

46 | ENERGIE CATALOGUE

Central heating

Combined Solution (Central heating + Domestic Hot Water)

Central heating

Combined Solution with Backup (Central Heating + Domestic Hot Water with a backup boiler)

_	1	Shut-off Valve
_	2	Pressure Reducer
-	3	Security Valve
	4	Expansion Valve
-	5	Filter
	6	Drain Valve

_	7	Check Valve (non-return)
-	9	Thermal Storage
-	10	Buffer Tank
-		
	А	Thermodynamic Solar Panels
-	AB	Thermodynamic Solar Panels Environment Heating

D Hot Water Outlet		S4	Temperature Sensor S4
F Flow Switch		Tamb	Environment Thermostat
P1 Circulating Pump	1	Text	Outside Thermostat
P2 Circulating Pump	2	BC	Boiler Circulator Pump
P3 Circulating Pump	3	B2	Resistance Kit (Support)
S3 Temperature Sen	sor S3	Q	Control Box

Choose your model

SOLAR BLOCK 88, PLUS 888 1 5 3

888 Represents the capacity of the equipment **88** Represents the number of panels

SOLAR BLOCK 6 / 12 / 16 / 28 / 40

Central heating

Standard Installation

Central heating + Swimming-pool

Combined Installation

1 Shut-off Valve	6 Drain Valve	B Environment Heating	Tamb Environment Thermostat
2 Pressure Reducer	7 Check Valve (non-return)	C Cold Water Inlet	T Thermostat
3 Security Valve	11 Pre-filter	F Flow Switch	G Swimming-pool
4 Expansion Valve	12 Filter	P1 Circulating Pump 1	H Water/Water Titanium Heat Exchanger
5 Filter	A Thermodynamic Solar Panels	P2 Circulating Pump 2	

Model Environment Heating Solar Block Number of Solar Panels 6, 12, 16, 28, or 40

Combined Solution
 Central Heating or Central Heating
 + Domestic Hot Water (Plus)

*** 4** DHW Cylinder capacity of the Combined Solution

Capacities available are 200, 300 or 500 litres **5** Single-Phase

- Three-Phase
- Only for the Combined Solution if applicable

SOLAR BLOCK 6 / 12 / 16 / 28 / 40

COMFORT, CONVENIENCE WITH MAXIMUM ECONOMY

Check warranty conditions

- SUPER EFFICIENT ENVIRONMENT HEATING AT LOW TEMPERATURE
- NON-EXISTENT PROGRAMMED MAINTENANCE
- POSSIBILITY OF JOINING ALL HOUSE HEATING EQUIPMENT INTO JUST ONE SOLUTION
- POSSIBILITY OF ALTERNATING BETWEEN ENVIRONMENT HEATING IN THE COLDER SEASONS AND
 SWIMMING-POOL HEATING IN THE WARMER SEASONS
- ABSOLUTE GUARANTEE OF PRODUCTION OF HOT WATER FOR HEATING AT 55°C DURING THE WINTER
- HIGHLY EFFICIENT SCROLL COMPRESSOR
- HIGH QUALITY STAINLESS STEEL PLATES EXCHANGER
- FREE OF DEFROST CYCLES
- SMALL DIMENSION INDOOR UNIT
- CENTRAL HEATING WITHOUT CHIMNEYS AND BURNT GASES, TOTALLY ENVIRONMENTALLY
 FRIENDLY
- WORKS WITH UNDERFLOOR HEATING, RADIATORS, CONVECTORS OR FAN COILS
- ELECTRONIC EXPANSION VALVE

Specifications

Model		Solar Block 6	Solar Block 12	Solar Block 16	Solar Block 28	Solar Block 40
Solar Panels	Nr.	б	12	16	28	40
Maximum Thermal Power	. W	7500	16580	24210	38220	54600
Power Consumption Min.	W	1230	2010	3210	5650	8450
Water Flow	m³/h	0,7	1,0	1,5	3,0	5,0
Pressure Drop	kPa	3,0	9	7	11	36
Electrical Supply		1~/ 230	V / 50 Hz ou 3~/ 40C	V / 50 Hz	3~/400	oV / 50 Hz
Protection (M/T)*	А	16/6	25/10	2x16/16	20	25
Hydraulic Connections	Pol.	1	1	1	1	1
Block Gross Weight	kg	48	96	128	210	320

*Magnetothermic Protection Switch (S, for the Single-Phase version and T for the Three-Phase version) to be fitted by the installer.

Model	Panels	Area to be heated*	Cylinder	Electrical Supply
Solar Block 6	6	90 m ²	-	230V ou 400V
Solar Block 12	12	150 m ²	-	230V ou 400V
Solar Block 16	16	220 m ²	-	230V ou 400V
Solar Block 28	28	300 m ²	-	400V
Solar Block 40	40	450 m ²	-	400V
Solar Block 6 Plus	б	90 m ²	200	230V ou 400V
Solar Block 12 Plus	12	150 m ²	300	230V ou 400V
Solar Block 16 Plus	16	220 m ²	300	230V ou 400V
Solar Block 28 Plus	28	300 m ²	500	400V
Solar Block 40 Plus	40	450 m ²	500	400V

*Does not relieve the sizing of the solar system according to the building, installation and geographic location.

SWIMMING-POOL HEATING

SOLAR BLOCK 6 / 12 / 16 / 28 / 40

SWIMMING-POOL HEATING

Thermodynamic Solar Solution for Swimming-pools

Equipment from 6 up to 40 solar panels

SWIMMING-POOL HEATING

Swimming-pool Heating

Standard Installation

Swimming-pool + Dehumidifier

Combined Solution

- Shut-off Valve
 Pressure Reducer
 Security Valve
- 4 Expansion Valve
- 5 Filter

6 Drain Valve	C Cold Water Inlet	T Thermostat
7 Check Valve (non-return)	F Flow Switch	G Swimming-pool
11 Pre-filter	P1 Circulating Pump 1	H Water/water titanium heat exchanger
12 Filter	P2 Circulating Pump 2	TH Thermo-Hygrometer
A Thermodynamic Solar Panels	P3 Circulating Pump 3	H1 Gas/Water Titanium Heat Exchanger

Choose your model

SOLAR BLOCK 88 PLUS 888 A 0 2 3 0 0

SOLAR BLOCK 6 / 12 / 16 / 28 / 40

Swimming-pool + DHW

Combined Solution

Combined Solution with backup

Check Valve (non-return)

1

<	
	

Model

Swimming-pool Heating Solar Block

2 Numbers of Solar Panels

3 Combined Solution Central Heating or Central Heating + Domestic Hot Water (Plus)

D Hot Water Outlet

4 Capacity

Being a Plus Solution the Available Capacities are 200, 300 or 500 litres **5** Single-Phase Version

Three-Phase Version

Text Outside Thermostat

* Only for the Combined Solution if applicable

SOLAR BLOCK 6 / 12 / 16 / 28 / 40

HEATED SWIMMING-POOL EVERY DAY **OF THE YEAR**

Check warranty conditions

- SWIMMING-POOL HEATED ALL YEAR ROUND WITH THE LOWEST COST IN THE MARKET
- NON-EXISTENT PROGRAMMED MAINTENANCE
- POSSIBILITY OF JOINING ALL HOUSE HEATING EQUIPMENT INTO JUST ONE SOLUTION
- POSSIBILITY OF ALTERNATING BETWEEN ENVIRONMENT HEATING IN THE COLDER SEASONS AND SWIMMING-POOL HEATING IN THE WARMER SEASONS
- HIGHLY-RESISTANT AND DURABLE TITANIUM EXCHANGER
- HIGHLY EFFICIENT SCROLL COMPRESSOR
- FREE OF DEFROST CYCLES
- SMALL DIMENSION INDOOR UNIT
- ELECTRONIC EXPANSION VALVE

ENERGIE

SPECIFICATIONS

Model		Solar Block 6	Solar Block 12	Solar Block 16	Solar Block 28	Solar Block 40
Solar Panels	Nr.	6	12	16	28	40
Maximum Thermal Power	W	7500	16580	24210	38220	54600
Power Consumption Min.	W	1230	2010	3210	5650	8450
Electrical Supply		1~/ 230	1~/ 230V / 50 Hz ou 3~/ 400V / 50 Hz		3~/ 400)V / 50 Hz
Protection (M/T)*	А	16/6	25/10	2x16/6	20	25
Gross Weight	kg	48	96	128	210	320

*Magnetothermic protection switch (S, for the Single-phase version and T, for the Three-phase version) to be fitted by the installer.

Model	Panels	Volume to be heated *	Cylinder	Electrical Supply
Solar Block 6	б	25 m ²	-	230V ou 400V
Solar Block 12	12	55 m ²	-	230V ou 400V
Solar Block 16	16	80 m ²	-	230V ou 400V
Solar Block 28	28	150 m ²	-	400V
Solar Block 40	40	180 m ²	-	400V
Solar Block 6 Plus	б	25 m ²	200	230V or 400V
Solar Block 12 Plus	12	55 m ²	300	230V or 400V
Solar Block 16 Plus	16	80 m ²	300	230V or 400V
Solar Block 28 Plus	28	150 m ²	500	400V
Solar Block 40 Plus	40	180 m ²	500	400V

*Does not relieve the sizing of the solar system according to the swimming pool, installation and geographic location.

SOLAR BLOCK COMMON TO ECO XL, CENTRAL HEATING AND SWIMMING-POOL

Technical drawing

LEFT AND RIGHT THERMODYNAMIC SOLAR PANEL

Technical drawing | Measured in mm : L-2000 | H-800 | P-20

DHW CYLINDERS OF THE COMMON PLUS SOLUTIONS FOR CENTRAL HEATING AND SWIMMING-POOL

Technical drawing

	200	300	500	
A	550	650	750	
В	1440	1492	1792	
1	1 1/4" F	1 1/4″ F	1 1/4″ F	
2	3/4" F	1" F	1″ F	
3	1″ F	1" F	1″ F	
4	1/2″F	1/2" F	1/2" F	
5	3/4" F	3/4″ F	3/4″F	
б	1/2" F	1/2" F	1/2" F	
7	3/4" F	1" F	1″ F	
8	11/4″ F	11/4″F	11/4″F	
9	11/4" F	11/4"F	11/4″F	

AEROTHERMAL ENERGY

QUAPURA EAT PUMPS FOR OMESTIC WATER Δ 5

ENERGIE PRESENTS

AQUAPURA SPLIT

ENERGIE

AQUAPURA

It is a system designed to get an optimal regulation of domestic water heating. The heat pump is a modern, efficient and clean solution that guarantees comfort in your home, always respecting the environment. It is an intelligent way of using nature's resources in order to improve your quality of life. In adopting this solution you will be making a serious commitment in terms of reducing harmful emissions to our atmosphere thus contributing to the natural balance of the planet.

AQUAPURA SPLIT AQUAPURA MONOBLOC

Operating principle

There is a cooling liquid that is pumped to an outdoor heat exchanger (evaporator).

Here the liquid, with the help of a fan, absorbs the energy from the atmosphere to the temperature differential obtained outdoors. During this process, the liquid changes to a gaseous state.

The gaseous state is sucked in by the mechanical part of the system, the compressor. Here it is compressed, the

pressure goes up and consequently the liquid temperature increases. After this, the liquid travels to a second inside heat exchanger (condenser) and transfers heat to the water in the cylinder.

The fluid goes into liquid state by cooling down. The liquid pressure is reduced due to a strangulation that happens in the expansion valve and the process starts again.

75%

EFFICIENT HOT WATER SOLUTIONS OF SIMPLE INSTALLATION

ADVANTAGES AQUAPURA SPLIT

- SMALL SPACE REQUIRED. ONLY THE CYLINDER STAYS INSIDE THE HOUSE
- ABSOLUTE SILENCE INSIDE YOUR HOME
- VARIOUS CAPACITIES, MODELS WITH AND WITHOUT SUPPLEMENTARY COIL

ADVANTAGES AQUAPURA MONOBLOC

- SIMPLE INSTALLATION SIMILAR TO A THERMAL STORAGE
- POSSIBILITY OF DEHUMIDIFYING AND/OR COOLING DOWN SMALL SPACES
- VARIOUS CAPACITIES, MODELS WITH OR WITHOUT SUPPLEMENTARY COIL

AQUAPURA SPLIT

Domestic Hot Water

Heat Pumps to heat Domestic Water

AQUAPURA SPLIT

ELECTRONIC CONTROLLER

Button	Function
	(ON/OFF)
CANCEL	(CANCEL)
OK	(OK) Confirmation
	(LOCK) Lock/ Unlock
MENU	MENU
СОМР	ON/OFFCompressor
E-HEATER	ON/OFF Electrical resistance
СОМР	Change Values
E-HEATER	Go through Menus/Submenus
DISINFECT	(DISINFECT)Anti-legionella

- 3 DISTINCT OPERATING MODES
- 2 FUNCTIONALITIES
- ALLOWS TEMPERATURE
 DISPLAY
- ELECTRICAL SUPPORT
- TIME PROGRAMMING
- KEYBOARD LOCK

EFFICIENCY AND SILENCE

NEW

ENERGIN

Check warranty conditions

- SILENCE AT HOME
- WITHOUT DUCTS
- REDUCED HEATING TIME
- LOW MAINTENANCE
- OUTSIDE THE CYLINDER CONDENSER (NO CONTACT WITH WATER)
- IMPROVEMENT OF THE ENERGY CLASSIFICATION OF THE BUILDING
- OPERATION TIME PROGRAMMING
- EFFICIENT FUNCTIONING EVEN AT LOW TEMPERATURES OUTDOORS
- EFFICIENCY AND SILENCE

THE PERFECT SYMBIOSIS

Outdoor Unit

High productivity Low noise emission High performance Robust Easy installation

Condenser

High thermal conductivity Outside the cylinder (no contact with water) High contact area with cylinder (favouring thermal transfer)

Electronic Controller

Easy to use Intuitive High resolution LCD screen Total control of Equipment

Characteristics

Adjustable support leg Outdoor aluminium plate Electrical support to meet the need for bigger consumption Protection anode against corrosion Safety thermostat

Insulation

High density Polyurethane High thermal resistance High mechanical resistance

Cylinder

Stainless Steel or Enamelled Cylinder High to corrosion Mechanical Robustness High dimension precision in the hydraulic connections

Split Heat Pump standard version

	Specifications		Aquapura Split 200esm	Aquapura Split 250i /250esm	Aquapura Split 300i
	Nominal Capacity	l	200	250	300
	Thermal Power (Med/Max)	W	1920/3200	1920/3200	1920/3200
	Power Consumption (Med/Max)	W	600/1000	600/1000	600/1000
	Temperature (Factory Setpoint)	°C	52	52	52
	Maximum Temperature	°C	80	80	80
-	Max. Amount of water at 40°C in a run (St./En.) l	-/290	330/345	375/-
	Maximum Operation Pressure	bar	б	б	б
	Sound Power Level	dB	33	33	33
	Liquid Line	Pol.	1/4	1/4	1/4
	Suction Line	Pol.	3/8	3/8	3/8
	Electrical back-up power	W	1500	1500	1500
	Gross Weight of Cylinder (St./En.)	Kg	-/73	62/83	74/-
	Electrical Supply	V/Hz	230/50	230/50	230/50

LOW-COST EFFICIENT SOLUTION SILENCE AT HOME

Outdoor

Unit

458

Dimensions

А

В

Е

Dimensions 200esm 250i/250esm 300i

F	74	74	74
G	650	815	815
Н	1146	1326	1543
	1274	1454	1671
	1350	1530	1750
K	580	580	580
L	685	685	685
М	879	879	879
Ν	290	290	290

1 (Hot water)	3/4" Male
2 (PT valve)	1/2" Female
3 (Recirculation)	3/4" Male
4 (Cold water)	3/4" Male
5 (Coil Inlet)	-
6 (Coil Outlet)	-

Technical drawing

N	
<u> </u>	7
К	

With flares valves on the split unit and on the cylinder With dielectric threads for water connections

Split Heat Pump with Supplementary Coil

	Specifications		Aquapura Split 250ix	Aquapura Split 300ix
	Nominal Capacity	l	250	300
	Thermal Power (Med/Max)	W	1920/3200	1920/3200
	Power Consumption (Med/Max)	W	600/1000	600/1000
	Temperature (Factory Setpoint)	°C	52	52
	Maximum Temperature	°C	80	80
-	Max. Amount of water at 40°C in a run (St	.) l	325	370
	Maximum Operation Pressure	bar	б	6
HIS CONTRACTOR	Sound Power Level	dB	33	33
	Liquid Line	Pol.	1/4	1/4
	Suction Line	Pol.	3/8	3/8
	Electrical back-up power	W	1500	1500
-	Gross Weight of Cylinder (St.)	Kg	69	81
	Electrical Supply	V/Hz	230/50	230/50

LOW-COST EFFICIENT SOLUTION SILENCE AT HOME

COP 3,5

Technical drawing

With flares valves on the split unit and on the cylinder With dielectric threads for water connections

В
C
D
E

Dimensions

Outdoor

Unit

458

Dimensions	250ix	300ix
F	74	74
G	815	815
Н	1326	1593
	1451	1671
J	1530	1740
К	580	580
L	685	685
М	879	879
Ν	290	290
0	1251	1251
Ρ	681	681
1 (Hot water)	3	/4" Male
2 (PT valve)	1/2	2″Female
3 (Recirculation	i) 3	/4" Male
4 (Cold water)	3	/4" Male
5 (Coil Inlet)		1″ Male
6 (Coil Outlet)		1″ Male

AQUAPURA MONOBLOC

Domestic Hot Water

Heat pumps to heat Domestic Wate

AQUAPURA MONOBLOC

Standard Installation

Installation with dehumidification and refreshing of the space

ELECTRONIC CONTROLLER

Button	Function
E-HEATER	ON/OFF of Electrical support
VACATION	Activate/Programme holiday setting
DISINFECT	Activate/Programme the disinfection function
	Increase temperature, time, holidays, etc.
ENTER Press 3 seconds for lock/unicok	Select/Execute and unlock
	Decrease temperature, time, holidays, etc
CLOCK TIMER	Program the clock and timer
CANCEL	Cancel Introduction/Exit
ON/OFF	Turn on/Turn off System Led Information on the state of the system (turned on/turned off)

The equipment always functions in economy setting by default.

- ALLOWS TEMPERATURE DISPLAY
- CONTROL OF THE AUXILIARY THERMAL SOLAR SYSTEM
- HOLIDAY SETTING
- ELECTRICAL SUPPORT
- ANTI-LEGIONELLA CYCLE
- TIME PROGRAMMING
- KEYBOARD LOCK

AQUAPURA MONOBLOC

- SIMPLE INSTALLATION
- DUCTS PROVIDE DEHUMIDIFICATION AND/OR REFRESHING OF SMALL AREAS
- REDUCED HEATING TIME
- LOW MAINTENANCE
- OUTSIDE THE CYLINDER CONDENSER (NO CONTACT WITH WATER)
- IMPROVEMENT OF THE ENERGY CLASSIFICATION OF THE BUILDING
- OPERATION TIME PROGRAMMING
- EFFICIENT OPERATION EVEN WHEN THERE ARE LOW TEMPERATURES OUTDOORS

1	DHW Cylinder
2	Condenser (Coil)
3	Optional Supplementary Coil
4	Ceramic resistance + Thermostat + Sensor
6	Magnesium Anode
6	High Density Insulation
7	Outside Coating
8	Electronic Controller
9	Heat Pump Unit
0	Ducts not Included

Enamelled Steel or Stainless Steel Thermal Storage with or without Supplementary Coil

INTEGRATED SOLUTION

Heat Pump

Linked to the cylinder High productivity Reduced noise High performance Possibility of using it for dehumidification and cooling of spaces

Condenser

High thermal conductibility outside the cylinder (no contact with water) High contact area with the cylinder (favouring thermal transfer)

Electronic Controller

Simple Intuitive Electronic Controller High resolution LCD screen Total control of the equipment

Characteristics

Adjustable support legs Outside plate in aluminium Electrical support to meet the need for bigger consumption Protection anode against corrosion Safety thermostat

Insulation

High density Polyurethane High thermal resistance High mechanical resistance

Cylinder

Stainless Steel or Enamelled Cylinder High resistance to corrosion Mechanical robustness Hydraulic connections with high dimensional precision

Monobloc Heat Pump standard version

Specifications		Aquapura Monobloc 300i / 300esm	
Nominal Capacity	Į	295	
Thermal Power	W	3000	
Power Consumption (Med/Max)	W	830	
Maximum Temperature	°C	70	
Max. Amount of water at 40°C in a run	l	370/403	
Maximum Operation Pressure	bar	б	
Sound Power Level	dB	48	
Electrical back-up power	W	3000	
Gross Weight of Unit (Stainless/Enamelle	d) Kg	124/145	
Electrical Supply	V/Hz	230/50	

EFFICIENT LOW-COST SOLUTION EASY INSTALL

Technical drawing

CONNECTIONS < 135° A∕1

Dimensions	Aquapura Monobloc 300i / 300esm
А	1915
В	650
C	77
D	757
E	1071
F	1157
G	1300

1 (Hot water)	1" Male	
2 (PT valve)	1/2" Female	
3 (Anode)	11/4" Female	
4 (Recirculation)	3/4" Male	
5 (Cold water)	3/4" Male	
6 (Coil Inlet)	-	
7 (Coil Outlet)	-	

Ducts not included - Includes filter where air enters the unit With dielectric threads for water connections

Monobloc Heat Pump

with Supplementary Coil

Specifications		Aquapura Monobloc 300ix / 300esmx	
Nominal Capacity	l	295	
Thermal Power	W	3000	
Power Consumption	W	830	
Maximum Temperature	°C	70	
Max. Amount of water at 40°C in a run	(St./En.) l	365/398	
Maximum Operation Pressure	bar	б	
Sound Power Level	dB	48	
Electrical back-up power	W	3000	
Gross Weight of Unit (St./En.)	Kg	131/157	
Electrical Supply	V/Hz	230/50	

EFFICIENT LOW-COST SOLUTION ALLOWS THE CONNECTION OF ANOTHER HEAT SOURCE

Dimensions

А

Е

F

Н

1 (Hot water)

2 (PT valve) 3 (Anode)

4 (Recirculation)

5 (Cold water)

6 (Coil Inlet)

7 (Coil Outlet)

Technical drawing

Ducts not included – Includes filter where air enters the unit With dielectric threads for water connections

Aquapura Monobloc

300ix /300esmx

1″ Male

11/4" Female

3/4" Male

1″ Male

1″ Male

The models and equipment reproduced and described in this catalogue are protected by patents. All the information about equipment and technical data is based on the characteristics of the Portuguese market and they may not correspond to reality. We reserve the right to make changes to any information. Total or partial reproduction of this catalogue is only allowed with the written authorization of ENERGIE, Est Lda.

Address Zona Industrial de Laúndos, Lote 48 4570-311 Laúndos - Póvoa de Varzim PORTUGAL GPS Coordinates N 41 27.215', W 8 43.669' Telephone + 351 252 600 230 Fax + 351 252 600 239 E-mail geral@energie.pt Website www.energie.pt

This catalogue was created for information purposes only and does not constitute a contractual offer from ENERGIE Est Lda. ENERGIE Est Lda has compiled the content of this catalogue to the best of their knowledge. There is no guarantee expressed or implied regarding the completeness, accuracy, reliability for a particular purpose of its content and the products and services presented therein. Specifications are subject to change without notice. The ENERGIE Est Lda explicitly rejects any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this catalogue.

Project co-funded by:

