

VIRTUS® MODULES

FROM SUPERIOR INGOT TO EXCELLENT MODULES

Outline

- Introduction of Virtus® Wafer manufacture
- Characteristics of Virtus[®] I module
- Characteristics of Virtus® II module
- Summary

Introduction of Various Ingot Growth Methods

	Multi Ingot	Mono Ingot	Virtus® Ingot
Growth method	Growth method DSS		Controlled DSS
Crystalline way	Seedless Seed		Seed
Crystalline growth control Random nucleation		Seeding	Controlled nucleation
Ingot size	450-800Kg	120Kg	450-800Kg
Grain Orientation	Grain Orientation Random		Preferred
Grain uniformity	Grain uniformity Random		Mono-like
Production cost	Lower	High	Low

- → Directional Solidification System (DSS) provides a solution of high productivity and lower production cost.
- → Cz method has advantage of excellent quality wafer, but with high production cost.
- → Controlled DSS combines the advantages of high productivity, high quality and lower production cost ReneSola

Characteristics of Virtus® I Modules

(Compared to Mono Modules)

- Lower LID (Light Induced Degradation)
- Lower power loss in higher temperature
- Cost reduction (wafer and cell cost)
- Identical power output

Virtus® I module

Mono module

Comparison between Virtus® I and Mono Ingot

(Innovative improvement of ingot growth)

	Mono Wafer	Virtus® Wafer
Growth methods	Cz method	Controlled DSS
Nucleation way	Seed growth	Seed growth
Crystalline growth control	Seeding	Controlled nucleation
Cell efficiency	High	High
Oxygen concentration	High	LOW
LID	High	LOW
Production cost	High	LOW

- → Mono-wafer has high efficiency, oxygen concentration which cause high LID due to high recombination B-O complex.
- → Virtus® wafer has high efficiency, low oxygen and LID.

Performance between Virtus® Land Mono Cells

- → Lower oxygen concentration creates less B-O complex in Virtus® wafer
- → Lower temperature coefficient of power output.

Comparison of Module Performance

Module level	Mono module	Virtus [®] I module
Power range (W)	245-260	245-260
Maximum power (W)	260	260
Average power (W)	255	255
Average efficiency	15.7%	15.7%
Power loss (CTM loss)	4.5%	4.0%
Temperature coefficient of power	-0.43%/°C	-0.39%/°C
Light induced degradation (LID)	-3%	-2%
Module cost	High	Low

Characteristics of Virtus® II Module

(Compared to Multi Modules)

- Higher power output
- The same LID
- The same CTM loss
- The same production cost

Comparison between Virtus® II and Multi Ingot (Innovative improvement of ingot growth)

	Multi Wafer	Virtus [®] II Wafer
Crystalline way	Seedless	Seedless
Crystalline growth control	Random nucleation	Controlled nucleation
Growth orientation	Random	Preferred
Grain uniformity	Random	Uniform
Production cost	Low	Low

[→] Ingot growth modification improves the uniformity of the grain size and preferred orientation.

Results of Ingot Growth

Conventional multi-ingot

Virtus® II ingot

- Conventional multi-ingot has disadvantage of poor grain distribution and low-lifetime.
- 2. Virtus® ingot improves the distribution of grain size and lifetime.
- 3. Virtus® ingot provides higher lifetime and lower dislocation density.

Differences of Wafer Appearance

Multi wafer

Virtus® A++ wafer

- Multi-wafer

 Many regions contain dislocation and microcrystalline

 Nonuniform distribution
- Virtus® A++ wafer → Uniform grain distribution with less defects

EL images between Multi- and Virtus® II Cells

- → The EL images shows that the multi-crystalline wafer has many defects.
- → Virtus® A++ wafer has much lower defects.

Comparison of Module Performance

Module level	Multi- modules	Virtus [®] II modules
Power range (W)	235-250	250-260
Maximum power (W)	250	260
Average power (W)	245	255
Average efficiency (%)	15.1	15.7
Temperature coefficient of power	Low	Low
Light induced degradation (LID)	Low	Low
Module cost	Low	Low

Summary

- Major defects of conventional multi-crystalline wafers can be reduced by the innovative controlled DSS method
- Virtus® I module provides lower thermal coefficient of power and light induced degradation compared to mono modules
- Virtus® II wafer increases cell efficiency due to higher lifetime, lower dislocation and uniform grain size.
- Virtus® II module shows better performance and the same production cost of multi module.

Module types	Wattage Range (60 pcs module)	Production Cost	Defect ratio	Appearance
Mono	250-260 W	Higher	lower	Even
Virtus® I	245-260 W	Medium, lower than Mono-	Medium	Uneven pattern
Multi	235-250 W	Lower	Higher	Even
Virtus® II	250-260W	Lower, the same as Poly-	Medium	Even

